5,269 research outputs found

    Application of model based control to robotic manipulators

    Get PDF
    A robot that can duplicate humam motion capabilities in such activities as balancing, reaching, lifting, and moving has been built and tested. These capabilities are achieved through the use of real time Model-Based Control (MBC) techniques which have recently been demonstrated. MBC accounts for all manipulator inertial forces and provides stable manipulator motion control even at high speeds. To effectively demonstrate the unique capabilities of MBC, an experimental robotic manipulator was constructed, which stands upright, balancing on a two wheel base. The mathematical modeling of dynamics inherent in MBC permit the control system to perform functions that are impossible with conventional non-model based methods. These capabilities include: (1) Stable control at all speeds of operation; (2) Operations requiring dynamic stability such as balancing; (3) Detection and monitoring of applied forces without the use of load sensors; (4) Manipulator safing via detection of abnormal loads. The full potential of MBC has yet to be realized. The experiments performed for this research are only an indication of the potential applications. MBC has no inherent stability limitations and its range of applicability is limited only by the attainable sampling rate, modeling accuracy, and sensor resolution. Manipulators could be designed to operate at the highest speed mechanically attainable without being limited by control inadequacies. Manipulators capable of operating many times faster than current machines would certainly increase productivity for many tasks

    Manipulators with flexible links: A simple model and experiments

    Get PDF
    A simple dynamic model proposed for flexible links is briefly reviewed and experimental control results are presented for different flexible systems. A simple dynamic model is useful for rapid prototyping of manipulators and their control systems, for possible application to manipulator design decisions, and for real time computation as might be applied in model based or feedforward control. Such a model is proposed, with the further advantage that clear physical arguments and explanations can be associated with its simplifying features and with its resulting analytical properties. The model is mathematically equivalent to Rayleigh's method. Taking the example of planar bending, the approach originates in its choice of two amplitude variables, typically chosen as the link end rotations referenced to the chord (or the tangent) motion of the link. This particular choice is key in establishing the advantageous features of the model, and it was used to support the series of experiments reported

    Geometric reasoning

    Get PDF
    Cognitive robot systems are ones in which sensing and representation occur, from which task plans and tactics are determined. Such a robot system accomplishes a task after being told what to do, but determines for itself how to do it. Cognition is required when the work environment is uncontrolled, when contingencies are prevalent, or when task complexity is large; it is useful in any robotic mission. A number of distinguishing features can be associated with cognitive robotics, and one emphasized here is the role of artificial intelligence in knowledge representation and in planning. While space telerobotics may elude some of the problems driving cognitive robotics, it shares many of the same demands, and it can be assumed that capabilities developed for cognitive robotics can be employed advantageously for telerobotics in general. The top level problem is task planning, and it is appropriate to introduce a hierarchical view of control. Presented with certain mission objectives, the system must generate plans (typically) at the strategic, tactical, and reflexive levels. The structure by which knowledge is used to construct and update these plans endows the system with its cognitive attributes, and with the ability to deal with contingencies, changes, unknowns, and so on. Issues of representation and reasoning which are absolutely fundamental to robot manipulation, decisions based upon geometry, are discussed here, not AI task planning per se

    A probabilistic and information theoretic interpretation of quantum evolutions

    Get PDF
    In quantum mechanics, outcomes of measurements on a state have a probabilistic interpretation while the evolution of the state is treated deterministically. Here we show that one can also treat the evolution as being probabilistic in nature and one can measure `which unitary' happened. Likewise, one can give an information-theoretic interpretation to evolutions by defining the entropy of a completely positive map. This entropy gives the rate at which the informational content of the evolution can be compressed. One cannot compress this information and still have the evolution act on an unknown state, but we demonstrate a general scheme to do so probabilistically. This allows one to generalize super-dense coding to the sending of quantum information. One can also define the ``interaction-entanglement'' of a unitary, and concentrate this entanglement.Comment: 9 page

    Measuring impact of academic research in computer and information science on society

    Get PDF
    Academic research in computer & information science (CIS) has contributed immensely to all aspects of society. As academic research today is substantially supported by various government sources, recent political changes have created ambivalence amongst academics about the future of research funding. With uncertainty looming, it is important to develop a framework to extract and measure the information relating to impact of CIS research on society to justify public funding, and demonstrate the actual contribution and impact of CIS research outside academia. A new method combining discourse analysis and text mining of a collection of over 1000 pages of impact case study documents written in free-text format for the Research Excellence Framework (REF) 2014 was developed in order to identify the most commonly used categories or headings for reporting impact of CIS research by UK Universities (UKU). According to the research reported in REF2014, UKU acquired 83 patents in various areas of CIS, created 64 spin-offs, generated £857.5 million in different financial forms, created substantial employment, reached over 6 billion users worldwide and has helped save over £1 billion Pounds due to improved processes etc. to various sectors internationally, between 2008 and 2013

    Numerical Modeling of Turbulent Combustion

    Get PDF
    The work in numerical modeling is focused on the use of the random vortex method to treat turbulent flow fields associated with combustion while flame fronts are considered as interfaces between reactants and products, propagating with the flow and at the same time advancing in the direction normal to themselves at a prescribed burning speed. The latter is associated with the generation of specific volume (the flame front acting, in effect, as the locus of volumetric sources) to account for the expansion of the flow field due to the exothermicity of the combustion process. The model was applied to the flow in a channel equipped with a rearward facing step. The results obtained revealed the mechanism of the formation of large scale turbulent structure in the wake of the step, while it showed the flame to stabilize on the outer edges of these eddies
    corecore